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SUMMARY

We consider the adaptation of a level set (LS) method for the simulation of capillary flows on unstructured
meshes. The advection step is first analysed. In order not to lose accuracy, this step should be one order
more accurate than the discretization of the velocity. We then compare different ways in choosing the LS
velocity and in re-initializing the LS function between advection phases without losing too much accuracy.
Applications to Rayleigh flows and to reorientation with contact angle are presented. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interface motion simulation has been studied from the early start of computer simulation. The level
set (LS) principle introduced in the late 1980s by Osher and Sethian [1–3] proposes to advect a
relatively smooth field � the zero contour of which is the interface to represent. Since the function
to advect is smooth (in contrast to the usual step function), this method opens the door to an
accuracy higher than first order.

The LS method extends to capillarity effects, see, for example, Sussman et al. [4, 5]. The idea
of using volumic functions rather than surface tracking extends to surface tension modellization,
by relying on function �’s volumic derivatives, according to ideas inspired by the work [6] of
Brackbill et al. We shall review how the LS can be described as a purely differential model.
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As concerns discretization, LS has been most usually associated with Cartesian discretizations.
Indeed the ancient, but still very attractive, Marker and Cell (MAC) approximation for incompress-
ible flow can be applied to them. They also allow an easier development of high order accurate
schemes. Most of all, in our opinion, Cartesian discretizations generally not only enjoy convergence
of dependent variables but also enjoy convergence of their derivatives, and this can be paramount
for surface tension modellization, which uses second derivatives of the solution of a (first-order)
advection equation.

The LS method also combines well with a finite-element discretization, the intrinsic interpola-
tion of which accurately specifies the interface location. Further, the combination of LS and finite
element lends itself to discretization on unstructured meshes. However, when leaving the comfort-
able Cartesian case, we need to pay attention in order to obtain for the global scheme an order of
accuracy better than unity for the interface advection. We propose an analysis which suggests to
advect the LS function with higher precision with respect to the target accuracy for the interface
motion. Further, in contrast to Cartesian meshes, surfaces traces and derivatives on unstructured
meshes, may have poor convergence to continuous analog, if any. For example, computing second
derivatives with linear Lagrangian finite elements deserves some attention. In [7, 8], Smolianski
proposes to apply recent superconvergent schemes and this paper applies the same method. We
evaluate our analysis on the calculation of a Rayleigh capillary instability.

Besides the numerical modelling of surface tension, a second important issue in capillarity
flows is the numerical modelling of the contact angle. We found very few publications discussing
numerical methods for this effect. In [9] where a Volume of Fluid (VOF) interface representation
is used, the contact angle is built from a geometrical reconstruction of the interface. In this paper,
we discuss the adequation of LS function and velocity extensions to contact angle modelling. We
propose and compare two approaches.

The paper is organized as follows. The next section recalls the main features of LS method.
In Section 3, by analysing the advection step, we give a lower estimate of the accuracy of the
method under gradient conditions. Section 4 completes the numerical model description. Section
5 examines some means of extending the LS function without introducing new error sources. We
propose a family of formulations which permits to accurately take into account the local orientation
of a solid wall. Sections 6 and 7 are devoted to the experimentation of the proposed options for
capillary flows with and without contact angle.

2. MAIN FEATURES OF THE LEVEL SET METHOD

Let us consider the following model for the flow of two incompressible immiscible fluids with
interface tension

�
�U
�t

+ �∇ · (U ⊗ U) − ∇ · (2�(�)D) + ∇ p + ��(�)�(�)n − �g= 0

�t� + ∇ · (�U) = 0, � = �l or �g (1)

∇ · U= 0

In this formulation, the fluid velocity is denoted by U, and the pressure by p. The density � takes
only two values in two subdomains separated by an interface sufficiently smooth to compute the
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surface normal

n�(�) = 1

�l − �g
∇� (2)

further, �(�) denotes the Dirac delta function on the interface, � the surface tension coefficient, �(�)

the curvature of the interface, g the gravity volumic force, D= 1
2 (∇U + ∇(U)T) the deformation

tensor, �(�) the dynamic viscosity and �l, �g the two values taken by the density in each fluid.
Typically, �l in the liquid and �g in the gas. In the case where � = 0 and �(�) is a constant, this
model is a particular case of the heterogeneous Navier–Stokes model as analysed in [10]. The
interface advection can be written with the characteristic function � of liquid phase

��

�t
+ U · ∇� = 0 (�= 0 or 1), � = ��l + (1 − �)�g

The formal accuracy of the advection of a step function as � is severely limited to first order unless
the numerical scheme exploits the fact that � takes only two different values. A particular way
of doing this is the second-order VOF method (see, for example, [11]) which we do not discuss
further here. Let H be the step function such that H(x)= 1 if x>0 and H(x)= 0 elsewhere. The
LS method introduced by Osher and Sethian [1] relies on a smooth function � satisfying � = H(�)

��

�t
+ U · ∇�= 0, � =H(�) (3)

� is initialized and periodically reset as the signed-distance to the interface �= ± d(�) [2, 3].
We take �<0 in the gas region and �>0 in the liquid region. The interface is the zero LS of �.

�={x|�(x, t) = 0} (4)

Using the � function, the previous governing equation for the fluid velocity U and the pressure
p along with boundary conditions can be written as a single equation with a continuous surface
force [6] formulation of the surface tension term [5],

�(�)
DU
Dt

=−∇ p + ∇ · (2�(�)D) − ��(�)�(�)∇(�) + �(�)g, ∇ · U= 0 (5)

The surface tension force is modelled as a volumic interfacial force on a thickened interface. �(�)

is the curvature computed in all the domains as the second derivative of �

�(�) =∇ · (n) = ∇ ·
( ∇�

|∇�|
)

(6)

The density and the viscosity are constant in each fluid, we can write

�(�) = �g + (�g − �l)H(�), �(�) = �g + (�g − �l)H(�)

The most usual LS method can be defined rather accurately according to the following stages:

Stage 1: define an advection velocity V for the LS.
Stage 2: advect the � function with velocity V from time level n to time level n + 1.
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Stage 3: replace the advected �̄
n+1

by a reinitialized or redistanced �̃
n+1

in order to satisfy at
each time step the condition

meas(−���̃
n+1��)�K1� (7)

Stage 4: replace the re-initialized �̃
n+1

by a �n+1 enjoying a conservation property.
Stage 5: compute with (6) a volumic extension �(�) of the zero contour curvature.
Stage 6: advance Equation (5) for moments.

The usual choice for V is V=U. Other options are discussed in Section 5. Stage 4 is needed
only for the spatially discrete case and will be discussed in Section 4. The justification of Condition
(7) is given in next section.

3. ERROR ANALYSIS OF LEVEL SET ADVECTION

This section is devoted to justifying Condition (7) and gives elements to choose the spatial
discretization. Let us assume that we know how to numerically advect the LS � by approximating
it with a discrete LS function �h . Since � is advected with a first-order hyperbolic model, according
to variational theory, the usual convergence property for �h on non-regular meshes is a convergence
in L p, but we can manage a high order k of accuracy in that norm. Let us examine the consequence
for the corresponding �� = H(�) functions.

Proposition 1
Let � be a L p(Q) function where Q = �× ]0, T [ is the flow integration domain in space and
time. Let (�h)h a sequence of L p(Q) we assume that

meas(−�����)�K1� (8)

‖�h − �‖L p(Q)�K2h
k (9)

with h, � sufficiently small, k the convergence order on � and K1,K2 independent of h, � then for
all real number q�1, there is a constant C(q) independent of h such as

‖H(�h) − H(�)‖Lq (Q)�C(q)h2k/3q (10)

Proof
the above integral can be analysed as follows:∫

Q
|H(�h) − H(�)| d� dt �meas(|�|��) + meas(|�h |��)

+meas(���, �h� − �) + meas(�� − �, �h��)

�meas(|�|��) + meas(|�h |��) + meas(|�h − �|�2�)

but

meas(|�|��)�K1� according to (8)
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and

meas(|�h |��)�meas(|�|�2�) + meas(|�h − �|��)

that is

meas(|�h |��)�2K1� + meas(|�h − �|��)

thus ∫
Q

|H(�h) − H(�)| d� dt�3K1� + 2meas(|�h − �|��) (11)

The last sum part can be estimated as follows:

meas(|�h−�|��)=
∫

|�h−�|p��p
1 d� dt� 1

�p

∫
|�h−�|p��p

|�h−�|p d� dt� 1

�p
‖�h−�‖p

L p(Q) (12)

and with (11) and (12), we get∫
Q

|H(�h) − H(�)| d� dt�3K1� + 2

�p
‖�h − �‖p

L p(Q)

By choosing � = h	, 	 = pk/(p + 1), we get∫
Q

|H(�h) − H(�)| d� dt�3K1h
	 + 2K 2

2h
−p	h pk�(3K1 + 2K 2

2 )h
pk/(p+1)

thus ∫
Q

|H(�h) − H(�)| d� dt�(3K1 + 2K 2
2 )h

pk/(p+1)

or equivalently, for q�1

‖H(�h) − H(�)‖Lq�K5h
pk/q(p+1) (13)

�

Remark 1
Estimate (13) is not optimal and the order of accuracy is located between pk/q(p + 1) and k.
However, the possible loss of accuracy shown in (13) is related to inaccuracy on the interface
when �h is not sufficiently smooth. In practice, �h can be re-initialized, but this may introduce
other errors. In the sequel, we shall refer to the case p= 2, q = 1, which gives an order between
2k/3 and k.

The above analysis suggests that, in order to get a global second-order convergence for a LS
multifluid calculation, a second-order Navier–Stokes approximation should be combined with a
third-order accurate advection of the function �. This is the option taken in the rest of the paper.
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4. SPATIAL DISCRETIZATION

In the computations presented, the six-stage LS algorithm of Section 2 is spatially discretized
on a 2D triangulation by considering all main variables in the usual finite element Vh space of
continuous, elementwise linear functions, with degrees of freedom at triangle vertices

U∈ (Vh)
2, p ∈ Vh, �∈ Vh, � ∈ Vh (14)

Most discretization options of [7] are adopted (in particular a projection algorithm for moments).
We deviate from this rule for the advection of � by advecting it with an upwind biased scheme of
second-order accuracy on general meshes and third-order accuracy on Cartesian meshes (see [12]).
As redistancing is concerned, several authors recommend to build a signed distance by iterating
until steady-state a Hamilton–Jacobi equation (see [2, 3, 5]). In our study, we follow Smolianski
[7] and our basic option is to rebuild a distance from a geometrical algorithm, defining �dist at
each vertex as the minimum distance to discrete zero level of �. In stage 4, we use a global volume
conservation correction slightly different from that of [7]; a small perturbation C� is added to �
in each point of the domain in order to solve iteratively the following conservation relation:

�n+1
h =�n+1

h + C�h
,

∫
H(�n+1

h ) dv =
∫

H(�n
h) dv

5. INTERFACE VARIABLES EXTENSION

The LS method relies on the representation of several variables defined on the interface as volumic
variables:

• the interface location is extended into a LS function;
• the interface velocity is used under a volumic shape;
• for capillarity, the interface normal and curvature also become volumic fields.

We observe that there are some constraints on these representations. They must be sufficiently
smooth, easy to compute accurately. Lastly, Condition (7) on LS gradient is a rather constraining
one. However, these conditions still allow for many possible choices between the possible extensions
of the above variables. The purpose of the reinitialization Stage 3 is to replace function � by a
new one of same zero contour but satisfying Condition (7). Further, this new function should be
sufficiently smooth to permit an accurate computation of interface curvature. In the discrete case,
there is no guarantee that the new function has exactly the same zero contour, nor that it will be
sufficiently smooth. If the advection step provides a � function which already satisfies the unit
gradient condition, at least close to interface, we can imagine that the error in the reinitialization
step can be made smaller, because the reinitialization step does not need large changes of function
� or even does not need changing it at all. However, we need to check whether the global algorithm
has an increased accuracy. In order to study these points, we propose to reconsider either interface
motion direction, or the extension of LS function from interface, which concerns Stage 3 (both
option can also be combined).
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5.1. Level set extensions

LS function’s gradient has to be controlled in order to satisfy condition (7). In usual LS method,
this is performed by two means: (a) a canonical extension of the zero level is built with a signed
distance, and (b) LS function is advected with the material velocity U. To build a more general
context, we identify two design criteria:

• control of LS gradient;
• consistent interface motion;
and we consider two main choices:
• the canonic LS extension;
• the interface velocity.

We restrict to 2D case for simplicity.

5.1.1. Consistent interface motion. Let us return to the advection of the characteristic function �
which writes (in sense of distributions)

��

�t
+ U · ∇� = 0 (� = 0 or 1) (15)

Let n� be the normal vector to the interface � and s� the tangential vector to the interface, i.e.
such as ∇� · s� = 0. The function � is equivalently advected with any velocity V′ such that

(U − V′) · n� = 0 on � ∀t>0 (16)

To parameterize the set of possible V′ over the whole computational domain we first introduce a
unit field specifying in the whole domain the direction of motion. Let Ṽ� be a vector defined on
� such that

Ṽ� · n� �= 0

|Ṽ�| = 1

If we construct a scalar field 
 such that


 = 〈V, n�〉
〈Ṽ�,n�〉

on the interface

then the vector field V′ = 
Ṽ� advects � in an equivalent way to U. To complete the definition of
V′, it remains to define an extension of 
.

5.1.2. LS gradient control. We look for an advection step which conserves the streamline derivative
of LS function in the neighbourhood of interface, i.e. which conserves the derivative of � parallel
to interface velocity. The interface velocity gradient should be zero in this neighbourhood. We
need a streamline constant extension operator for this velocity.
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Constant extension: 
 �→ S̃
: given 
 on the interface, we can extend it along the field Ṽ� by
imposing its extension S̃
 to be constant on each trajectory. This extends the interface velocity V′

Ṽ� · ∇ S̃
 = 0 (17)

V′ = S̃
Ṽ� (18)

In a dual manner, the corresponding extension operator for � is a constant-gradient extension
operator

Constant-gradient extension: � �→ P̃�: given a scalar field � on the interface, we can define
P̃� as the function equal to � on the interface and such that

Ṽ� · ∇ P̃�= 1 (19)

The main properties of our construction is now summed up.

Proposition 2
Starting from a LS function satisfying the gradient property (19), for example defined as P̃�, and
advecting it with the streamline constant extension V′ = S̃
Ṽ�

�P̃�

�t
+ S̃
Ṽ� · ∇ P̃�= 0 (20)

will produce an advected � which still satisfies the gradient property (19) in the vicinity of interface.

Proof
We assume that we can construct a prolongation of � such that

∇ P̃� · Ṽ� = 1 with Ṽ� constant in time

To demonstrate that ∇ P̃� · Ṽ� is constant in time, we use (17), (19) and (20)

�(∇ P̃� · Ṽ�)

�t
= ∇ P̃�

�t
· Ṽ� =∇

(
P̃�

�t

)
· Ṽ� = − ∇(S̃
Ṽ · ∇ P̃�) · Ṽ� = − ∇ S̃
 · Ṽ� = 0 �

5.2. A dilemma

The important consequence of Proposition 2 is that since (19) is satisfied, the reinitialization will
not introduce a large error or can in some case be purely skipped. However, the operation of taking
the trace of the velocity U on the interface � introduces a new error which needs to be analysed.
Let us analyse the system as if it were an elliptic second-order one. The functional space to do
this is the Sobolev space Hs of functions with square integrable derivative up to order s. This
definition extends to fractional s through local Fourier transforms. We assume that

• either the velocity is a smooth known function U which we interpolate on P1 functions.
Uh =�hU. then for s = 0 and 1

‖Uh − U‖Hs =‖�hU − U‖Hs�K1(U)h2−s (21)
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• or the velocity is accurately computed from a discretized system satisfying the following error
estimate:

‖Uh − U‖Hs�K2(U)h2−s (22)

By the trace theorem and by the convexity inequality, we get

‖U − Uh‖L2(�)�K3(U)‖U − Uh‖H1/2�K4(U)‖U − Uh‖1/2H0 ‖U − Uh‖1/2H1 �K5(U)h3/2 (23)

where K1, K2, K3, K4, K5 depend on U but not of h. This means that working with any extension
of the velocity from its trace on the interface implies a loss of accuracy order with a gap of 1

2 , in
particular.

Proposition 3
With a second-order accurate Navier–Stokes scheme, a global accuracy of 3

2 holds.

To sum it up, it is possible to build a velocity field which to some degree avoids the error
associated with redistancing, but some other loss of accuracy may arise, especially when irregu-
lar/unstructured meshes are used, due to the fact that we take a trace of advection velocity on the
interface.

5.3. Provisional conclusion

We have identified a general class of interface velocity and extension. The impact on global
accuracy is analysed. In the absence of wall effect, reinitialization by a signed distance can be
improved by increasing the consistency of the combined advection and redistancing steps. When
the problem under study involves a contact angle condition, we shall choose in Section 7 a different
reinitialization.

6. FIRST EXPERIMENT: CAPILLARY INSTABILITY

This section is devoted to illustrate Section 3. We investigate how accurate is the LS algorithm
based on a reinitialization by signed distance and the third-order advection scheme of the LS
function. We consider the Rayleigh instability of a liquid cylinder in the case where capillary
effects are dominant. The cylinder is perturbed with a perturbation equation in the half plane
(x>0) containing the symmetry axis of the cylinder defined as

x = a + � sin

(
2�y

�d
+ K1

)
(24)

in which �d and � are, respectively, the wave length and the perturbation height. For �d>2�a
where a is the liquid cylinder radius, the perturbation amplifies (Figure 1).

We use the numerical algorithm, stage 1 to stage 6, described in the second section, with:

• an axisymmetric formulation;
• a geometric redistancing of � every 10 time steps;
• a mass conservation of each disconnected liquid phase in the manner described at the

end of Section 4.
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Figure 1. Initialization of the perturbation. Visualization of pressure field,
velocity vectors and interface (black line).

Table I. Test case: capillary instability.

Surface tension coefficient �= 0.07275 SI
Liquid cylinder radius r = 0.01 m
Density ratio �l = 1000 kg m3, �g = 1.2 kg m3

Computation domain size Lx = 0.01 m, Ly = 0.02 m
a = 0.0025 m, �d = 0.02 m

According to the previous analysis, a global spatial accuracy of second order should hold for
regular cases.

We measure the numerical order of accuracy before and after the formation of a drop. The
different parameters of the test case are described in Table I. We compare the results obtained
with three meshes embedded with, respectively, 902, 3402 and 13 202 mesh nodes (grid space
step, respectively, of 4h, 2h and h with h = 0.125mm). Time discretization error is kept small by
ad hoc choices of time steps.

The breaking occurs at t = 0.136 s for the coarse mesh, t = 0.125 s for the intermediate mesh and
t = 0.122 s for the fine mesh. We measure the convergence of both the L2 error norm of � and the
L1 error norm of H(�) at t = 0.11 s (before the breaking for the three meshes) t = 0.12 and 0.13 s
(after the breaking for all meshes). Figures 2 and 3 representing the mesh convergence on interface
location at t = 0.11, 0.12 and 0.13 s give already a visual idea of the loss of accuracy. Table II
shows the convergence order on the deviations ‖�h − �2h‖L2 , where �’s are redistanced, and
‖H(�h) − H(�2h)‖L1 between embedded meshes. The numerical convergence order is evaluated
through computations on three embedded meshes by the following equation:

n =
log

(‖�2h − �4h‖
‖�h − �2h‖

)
log(2)

(25)
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X

Y

-0.01 -0.005 0 0.005 0.01 0.015
0

0.005

0.01

0.015

0.02

Rayleigh instability in liquid cylinder. Mesh convergence on
interface location. T=0.11s. Before break of the liquid bridge
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Figure 2. Left: mesh convergence on interface at T = 0.11 s. Right: mesh
convergence on interface at T = 0.12 s.
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Rayleigh instability in liquid cylinder. Mesh convergence
on interface location. T=0.13s. After break of the liquid bridge.
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Rayleigh instability in liquid cylinder. Mesh convergence
on interface location T=0.15s. Around stabilization

Figure 3. Left: mesh convergence on interface at T = 0.13 s. Right: mesh convergence on interface at
T = 0.15 s (medium and fine outputs are very close to each other).

where �h ,�2h and �4h are discrete solutions on the mesh with h, 2h and 4h as space
step.

Results for time t = 0.11 illustrate the case for which our error analysis of Section 3 should
apply. Redistanced �’s converge with an order smaller than 3. Conversely, for these very smooth
interfaces, interfaces converge uniformly and with a numerical order of three, i.e. more than
expected from the accuracy of the global Navier–Stokes scheme. Time t = 0.12 results still show
approximately second-order numerical order. At time t = 0.13, breaking has occurred for medium
and fine meshes but not yet for the coarse-mesh computation. The accuracy on that coarse mesh is
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Table II. Capillary instability.

Physical time (s) Grid size L2 deviation on � L1 deviation on H(�)

0.11 902 — —
0.11 3402 1.6253× 10−6 2.45461× 10−6

0.11 13 202 2.46967× 10−7 3.23397× 10−7

0.11 Numerical order 2.7 2.92

0.12 902 — —
0.12 3402 2.982× 10−6 5.515× 10−6

0.12 13 202 7.915× 10−7 1.520× 10−6

0.12 Numerical order 1.91 1.86

0.13 902 — —
0.13 3402 9.33789× 10−6 1.38947× 10−5

0.13 13 202 3.233× 10−6 2.236× 10−6

0.13 Numerical order 1.53 2.63

Note: Numerical order on the interface position at t = 0.11, 0.12, and 0.13 s.

much degraded for the � function. The level of error for H(�) becomes also high for the coarse
mesh and the high numerical order measured is not significative of anything but the large error of
coarse mesh.

7. APPLICATION TO CAPILLARITY WITH CONTACT ANGLE

We consider now the numerical modelling of axisymmetric capillary effects with gravity and
contact angle in a vertical tube. In the differential model that we study, a prescribed static angle

S is satisfied by the interface. In terms of the LS function, this means that at contact point A we
have

∇�(A) · n� = cos(
S) (26)

Since 
S is generally not equal to �/2, the corresponding signed distance to interface is not smooth
in the vicinity of the contact point. A consequence is that the interface curvature is more difficult
to evaluate from the LS function (6) as we can observe in Figure 4. We need to consider another
option for reinitialisation of �. In this section, we propose an axial velocity field construction and
an axial extension operator and we study their impact on the computation of the reorientation of
a free surface after a sudden decreasing of gravity to zero.

7.1. Axial velocity field and axial extension operator

With the particular geometry of a tube, we can use a very simple particular case of the previous
theory. We take as velocity Ṽ� the constant unitary field parallel to vertical axis

Ṽ� = ez

At an instant t , we extend the LS function from the interface position (�� = 0) along ez , with

��

�z
= 1 (27)
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Figure 4. Equilibrium circular meniscus with contact angle. Left: signed distance � function. The
thickened line represents the interface. Right: curvature ‘�’ computed as 2nd derivative of �.

Let h p = f (r) be the bijection representing the interface. We define function �’s z-affine extension
with

�(r, z) = − (z − h p(r)) (28)

As the representation of the interface can be represented as a bijection h p = f (r) and since the
contact angle is not equal to zero for any point M(r, z) of �, we have

ez · n� �= 0

Then, according to the previous theory, we can derive a new velocity field V′ as follows

V′ = 
ez and V′ = (U · n�) · n� + 
s�

This choice allows the satisfaction of Condition (7) specified in Section 2 as far as the interface
orientation does not show vertical parts, i.e. its normal is never orthogonal to z-axis.

V′
r = 0= ((U · n) · n)r + 
sr (29)

V′
z = ((U · n) · n)z + 
sz (30)


= −((U · n) · n)r

sr
(31)

V′
z = 
ez with 
 = ((U · n) · n) · ez + 
sz (32)

In the whole domain V′(r, z) = 
(r)ez where 
(r) is the value of 
 at radius r on �. Figure 5
shows the desired transformation. The advancing of � in time with V′(r, z) keeps the property
�(r, z) = − (z − h p(r)). On Figure 6, we can also observe how the extension of the � function
along ez improves the computation of the curvature on a circular equilibrium interface compared
to the case of � as a signed distance to the interface.
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Figure 5. Transformation of the velocity field U → V′ = 
Ṽ with Ṽ= ez .

Figure 6. Equilibrium circular meniscus with contact angle. Left: � function extended
along ez . Right: curvature ‘�’ computed as 2nd derivative of � extended along ez .

Thickened line represents the interface.

7.2. Numerical results

We consider the reorientation computation of a free surface in an axisymmetric vertical cylinder
after a sudden decreasing of the gravity to zero. The motion is dominated by two effects, the
surface tension force and the contact angle at wall. In this study, we are interested in numerical
accuracy and we restrict our study to a constant contact angle model. This means that Condition
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Table III. Physical properties of liquid phase.

Dynamic viscosity of the liquid 2.566× 10−3 kg m−1 s
Contact angle, 	S 55◦
Surface tension coefficient �= 0.0181074 SI
Cylinder radius r = 0.01 m
Cylinder height h = 0.048 m
Density values �l = 879 kg m3, �g = 1.2 kg m3

0.2 0.4 0.6 0.8 1
r/R

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

h(
r,

 t)
 (

cm
)

t (sec)

0

0.1

0.2

0.3

0.4

0.5

Figure 7. Capillary reorientation. Free surface evolution t = 0.; 0.01; 0.02; 0.03; 0.04; 0.05 s.

(26) is imposed at each time step. The liquid is M3 with physical properties given in Table III.
The gas is air. We refer to the works of ZARM research centre of Bremen, [9, 13, 14] for further
details and for investigations of physical aspects of the problem under study.

Initial condition of the simulation is the equilibrium of a liquid in a cylindrical horizontal vessel
under gravity and capillary forces. The gravity is suddenly shifted to zero. The liquid moves
towards a new zero-gravity equilibrium, limited by a perfect spherical interface. We compute the
reorientation transients over t = 4.7 s on four meshes embedded but not uniform (refined on the
wall) with, respectively, 11, 21, 41, 81 grid nodes in the cylinder radius. Then third order accuracy
of LS advection does not apply and accuracy can be limited to 4

3 for the interface (Section 3),
to be compared to the possible 3

2 (or worse) limitation for an option using a trace of the veloc-
ity (Section 4). The initial equilibrium shows an interface which is essentially horizontal, flat at
central region, with large curvature and contact angle at the wall. Figure 7 shows the smooth
advection of the interface other the first 0.05 s. The interface position at wall rises monotoni-
cally. Figure 8 demonstrates that this rising continues after 0.1 s. Then the motion oscillates in
a damped mode, converging to the new equilibrium. We propose a mesh convergence study for
� and H(�) at time levels t = 0.005, 0.01, 0.02 s for two different schemes introduced below, in
order to get a confirmation of the two estimates (13) and (23). The LS function � is initialized
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Figure 8. Capillary reorientation. Mesh convergence for the interface position on the wall.

Table IV. Capillary meniscus reorientation.

Number of nodes in the cylinder radius L2 deviation norm on � L1 deviation norm on H(�)

11 — —
21 1.06668× 10−7 3.40992× 10−8

41 5.32013× 10−8 1.45119× 10−8

Numerical order 1.003 1.233
81 2.51436× 10−8 4.73495× 10−9

Numerical order 1.081 1.62

Note: Numerical order on the deviation norms at t = 0.005 s for Scheme 1.

as the z-affine extension introduced in (28). Then we apply the two following advection schemes
for �:

Scheme 1: We advect � with the axial velocity field (32) deduced from the physical velocity
and apply no reinitialization.

Scheme 2: We advect � with the physical velocity and we reinitialize the � as the z-affine
extension introduced in (28).

Figure 8 shows the mesh convergence on the time evolution of the interface position on the
wall using Scheme 2 for the computation. We measured a global second-order convergence on
the contact point of interface location at the maxima of this curve (t ≈ 0.12 s). To measure the
convergence on global interface position, we consider the same norms as before, i.e. ‖�h −�2h‖L2

and ‖H(�h)−H(�2h)‖L1 . Tables IV and V show numerical convergence figures. Convergences of
the deviation norm L2 on � are particularly poor, and less good for Scheme 1 than for Scheme 2.
The influence of redistancing (Scheme 2) may be rather large. For the Scheme 1 result, the error in
velocity trace can qualitatively explain, according to (23) the disappointing convergence. However,
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Table V. Capillary meniscus reorientation.

Number of nodes in the cylinder radius L2 deviation norm on � L1 deviation norm on H(�)

11 — —
21 1.10242× 10−7 3.43735× 10−8

41 4.72528× 10−8 1.38395× 10−8

Numerical order 1.22 1.31
81 1.84879× 10−8 4.70746× 10−9

Numerical order 1.35 1.555

Note: Numerical order on the deviation norms at t = 0.005 s for Scheme 2.

both schemes give about the same accuracy for the interface, an accuracy not so different from
the 3

2 and 4
3 theoretical predictions.

8. CONCLUDING REMARKS

The LS principle introduces a smooth function � in place of a step function, opening the door
to higher-order accurate advection. We first analyse with only very few assumptions how higher
order can be obtained, and under which conditions. We then define a larger set of possible LS
re-initializations and of possible interface velocities constructions and we study the interaction
between these options.

The first part of the analysis is confronted with the practical calculation of a capillary Rayleigh
instability. In this flow, although a singularity appears at breaking time, the overall accuracy remains
close to second order.

In the case of a capillarity phenomenon with contact angle, we propose to replace the signed
distance by a generalized one in order to provide an accurate curvature field at contact point
vicinity. Two options are compared. Either LS is solely extended or the interface velocity is also
extended from the trace on interface. These options appear of equivalent accuracy and stability
on the calculation of a zero-gravity interface re-orientation. In a general geometry, an extension
of the proposed method would involve the evaluation of the parameterizing field by a numerical
algorithm. Under this condition, the method would extend to 3D geometries.
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